Nell’ultima lezione di geometria, a partire da una domanda di Beatrice (smettetela di maledirla), vi ho insegnato come costruire segmenti aventi per lunghezza la radice quadrata di 2, di 3 e di tutti i numeri naturali.
Per costruire questi segmenti si parte da un triagolo rettangolo isoscele e si procede seguendo le istruzioni che vi ho dato in classe, disegnando così una figura che prende il nome di spirale di Teodoro.
Se la spiegazione in classe non è stata abbastanza chiara, o se vuoi approfondire l’argomenti, ecco alcuni link che puoi consultare:
Ad ogni modo, per il 20 maggio 2016 mi aspetto un tuo file, dove la spirale sia costruita almeno fino al segmento di lunghezza radicequadrata di 17.
Ecco alcuni dei disegni dei miei alunni di qualche anni fa:
La seguente immagine non è di un alunno, ma di una collega: grazie a Daniela Molinari, che i miei studenti conoscono già per le sue recensioni su amolamatematica.it.
Daniela ha lasciato tutti gli elementi della costruzione e ha colorato nello stesso modo tutti i triangoli. A mio parere l’effetto è quello di lasciare che siano evidenti (dalla costruzione, appunto) le proprietà della figura e di dare un’immagine complessiva della spirale, piuttosto che dei suoi singoli spicchi.